6^2=x(x+4)

Simple and best practice solution for 6^2=x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6^2=x(x+4) equation:



6^2=x(x+4)
We move all terms to the left:
6^2-(x(x+4))=0
We add all the numbers together, and all the variables
-(x(x+4))+36=0
We calculate terms in parentheses: -(x(x+4)), so:
x(x+4)
We multiply parentheses
x^2+4x
Back to the equation:
-(x^2+4x)
We get rid of parentheses
-x^2-4x+36=0
We add all the numbers together, and all the variables
-1x^2-4x+36=0
a = -1; b = -4; c = +36;
Δ = b2-4ac
Δ = -42-4·(-1)·36
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{10}}{2*-1}=\frac{4-4\sqrt{10}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{10}}{2*-1}=\frac{4+4\sqrt{10}}{-2} $

See similar equations:

| 5+3h=45 | | 100=6x-160-10x | | 18x=-58 | | -4x+20=-2x+28 | | (19x-18)°+(7x-1)°=180° | | 52=-5x-3= | | 1/3(6x-9)+1=15-1/2(20-10x) | | 79.2=8(m+3.2) | | 5b+3H=45 | | 2x+24=3x+2 | | 6x–21=45 | | 10-x/16=-23 | | m=-2;(-1,-4) | | 24=1x6 | | 5/4x-6=39 | | 22+h/2=-13 | | m=5/3;(3,3) | | 4/7x+22=50 | | Y=5x+7=6x | | 5(6-3d)=26 | | m+35=-10 | | m=-1/7;(7,-5) | | -3x+168=3x+66 | | 4=4h | | 19+8n=75 | | 5x-8+2x=41= | | 3(x-2)=2(3-x) | | 11=q/3+ 8 | | 2(4m+1)=3(m+3) | | 8v-4(v+8)=v | | m=4;(1,-3) | | 1/2(5-7x)=8-(4x+6) |

Equations solver categories